Search results

Search for "noncontact atomic force microscopy" in Full Text gives 28 result(s) in Beilstein Journal of Nanotechnology.

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • three experiments. The FEBID structures were investigated by SEM and noncontact atomic force microscopy (AFM). Figure 3a shows the SEM images of the deposits along with the respective deposition parameters. Magnified sections from these SEM images are shown in Figure 3b. Auger electron spectroscopy was
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • time [31]. To reach sufficient sensitivity, the value should typically be larger than 1 V. Experimental The experiments were performed by customized ultrahigh-vacuum (UHV) noncontact atomic force microscopy (NC-AFM, UNISOKU) at a temperature T of 78 K with a base pressure below 5 × 10−11 Torr. The NC
PDF
Album
Full Research Paper
Published 25 Jul 2022

Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene

  • Zhao Liu,
  • Antoine Hinaut,
  • Stefan Peeters,
  • Sebastian Scherb,
  • Ernst Meyer,
  • Maria Clelia Righi and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2021, 12, 432–439, doi:10.3762/bjnano.12.35

Graphical Abstract
  • reconstruction of a two-dimensional layer of KBr on an Ir(111) surface is observed by high-resolution noncontact atomic force microscopy and verified by density functional theory (DFT). The observed KBr structure is oriented along the main directions of the Ir(111) surface, but forms a characteristic double-line
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2021

Numerical analysis of vibration modes of a qPlus sensor with a long tip

  • Kebei Chen,
  • Zhenghui Liu,
  • Yuchen Xie,
  • Chunyu Zhang,
  • Gengzhao Xu,
  • Wentao Song and
  • Ke Xu

Beilstein J. Nanotechnol. 2021, 12, 82–92, doi:10.3762/bjnano.12.7

Graphical Abstract
  • the optimal diameter was found to be 0.1 mm. Keywords: finite element method; long tilted tip; noncontact atomic force microscopy; qPlus sensor; quartz tuning fork; simulations; Introduction Quartz tuning forks are widely used in the watch industry because of their low frequency offset over a wide
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2021

Direct observation of the Si(110)-(16×2) surface reconstruction by atomic force microscopy

  • Tatsuya Yamamoto,
  • Ryo Izumi,
  • Kazushi Miki,
  • Takahiro Yamasaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2020, 11, 1750–1756, doi:10.3762/bjnano.11.157

Graphical Abstract
  • , Himeji, Hyogo 671-2280, Japan Institute for Nanoscience Design, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-0043, Japan 10.3762/bjnano.11.157 Abstract The atomic arrangement of the Si(110)-(16×2) reconstruction was directly observed using noncontact atomic force microscopy (NC-AFM) at 78 K
  • between upper and lower terraces, which have not been reported using STM. These findings are key evidence for establishing an atomic model of the Si(110)-(16×2) reconstruction, which indeed has a complex structure. Keywords: atomic force microscopy (AFM); noncontact atomic force microscopy (NC-AFM); Si
  • were performed using noncontact atomic force microscopy (NC-AFM) under ultrahigh vacuum (UHV) conditions, where the frequency modulation AFM (FM-AFM) method was used. The pressure was maintained below 3 × 10−11 Torr and the temperature was held at 78 K. As a probe, a commercially available Si
PDF
Album
Letter
Published 19 Nov 2020

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • out with a custom-built ultrahigh-vacuum noncontact atomic force microscopy (NC-AFM) system operated at a temperature of 78 K with a base pressure below 4 × 10−11 mbar. The NC-AFM system was operated in the frequency-modulation mode [44] with a constant cantilever oscillation amplitude (5 Å). The
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals

  • Yann Almadori,
  • David Moerman,
  • Jaume Llacer Martinez,
  • Philippe Leclère and
  • Benjamin Grévin

Beilstein J. Nanotechnol. 2018, 9, 1695–1704, doi:10.3762/bjnano.9.161

Graphical Abstract
  • du Parc 20, B7000 Mons, Belgium 10.3762/bjnano.9.161 Abstract In this work, methylammonium lead tribromide (MAPbBr3) single crystals are studied by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). We demonstrate that the surface photovoltage and crystal
  • . Keywords: carrier lifetime; ion migration; Kelvin probe force microscopy (KPFM); noncontact atomic force microscopy (nc-AFM); organic–inorganic hybrid perovskites; photostriction; single crystals; surface photovoltage (SPV); time-resolved surface photovoltage; Introduction Organic–inorganic hybrid
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Optimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis

  • Omur E. Dagdeviren and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2017, 8, 657–666, doi:10.3762/bjnano.8.70

Graphical Abstract
  • ; noncontact atomic force microscopy; quartz tuning forks; scanning tunneling microscopy; self-sensing probe; Introduction Scanning tunneling microscopy (STM) [1] and non-contact atomic force microscopy (NC-AFM) [1][2][3] are powerful methods allowing the visualization of the atomic structure of a surface
PDF
Album
Full Research Paper
Published 20 Mar 2017

Noncontact atomic force microscopy III

  • Mehmet Z. Baykara and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2016, 7, 946–947, doi:10.3762/bjnano.7.86

Graphical Abstract
  • that they rely on the establishment of light contact between a sharp probe and the sample surface of interest for topographical imaging. This results unavoidably in the formation of a finite contact area and the loss of atomic-scale resolution. The invention of noncontact atomic force microscopy (NC
  • publication of two installments in the Thematic Series titled “Noncontact Atomic Force Microscopy” in the Beilstein Journal of Nanotechnology [1][2]. This Thematic Series focusing on NC-AFM complements two other series titled “Advanced Atomic Force Microscopy Techniques” [3][4] and “Scanning Probe Microscopy
  • and Related Methods” [5], making the Beilstein Journal of Nanotechnology a well-recognized outlet for scanning probe microscopy research. The current and third installment in the “Noncontact Atomic Force Microscopy” Thematic Series again demonstrates the constant development in the field. In
PDF
Editorial
Published 30 Jun 2016

High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

  • Benjamin Grévin,
  • Pierre-Olivier Schwartz,
  • Laure Biniek,
  • Martin Brinkmann,
  • Nicolas Leclerc,
  • Elena Zaborova and
  • Stéphane Méry

Beilstein J. Nanotechnol. 2016, 7, 799–808, doi:10.3762/bjnano.7.71

Graphical Abstract
  • dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are
  • elementary building block level. Keywords: donor–acceptor co-oligomers; donor–acceptor lamellae; donor–acceptor-ordered bulk heterojunction; Kelvin probe force microscopy (KPFM); noncontact atomic force microscopy (nc-AFM); organic photovoltaics; surface photo-voltage (SPV); Introduction Nowadays, with
  • self-assembled dyads. Conclusion Self-assembled thin films of donor–acceptor dyads have been investigated by noncontact atomic force microscopy and Kelvin probe force microscopy. Consistent with the results of transmission electron microscopy, the nc-AFM images reveal that the dyads self-assemble
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2016

Rigid multipodal platforms for metal surfaces

  • Michal Valášek,
  • Marcin Lindner and
  • Marcel Mayor

Beilstein J. Nanotechnol. 2016, 7, 374–405, doi:10.3762/bjnano.7.34

Graphical Abstract
  • adamantane-based tripodal molecules have been reported by Yamakoshi and co-workers [83][90]. They designed and examined azobenzene-terminated tripodal derivatives 13 (Figure 5), which are suitable as a single-molecular tip for noncontact atomic force microscopy (NC-AFM). The reversible photoisomerisation of
PDF
Album
Review
Published 08 Mar 2016

Noncontact atomic force microscopy II

  • Mehmet Z. Baykara and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2014, 5, 289–290, doi:10.3762/bjnano.5.31

Graphical Abstract
  • achieved in 1994 with the invention of noncontact atomic force microscopy (NC-AFM). The basic idea behind NC-AFM is based on the detection of minor changes in the resonance frequency of a micro-machined cantilever carrying a sharp probe tip due to attractive force interactions while it is oscillated above
PDF
Editorial
Published 12 Mar 2014

Noise performance of frequency modulation Kelvin force microscopy

  • Heinrich Diesinger,
  • Dominique Deresmes and
  • Thierry Mélin

Beilstein J. Nanotechnol. 2014, 5, 1–18, doi:10.3762/bjnano.5.1

Graphical Abstract
  • electrostatic forces in amplitude modulation Kelvin force microscopy (AM-KFM) [1] or the measurement of the electrostatic force gradient in FM-KFM [2], in analogy with the FM mode used in noncontact atomic force microscopy (nc-AFM) [3]. The FM-KFM mode is often favored either because when a higher derivative of
PDF
Album
Full Research Paper
Published 02 Jan 2014

Determining cantilever stiffness from thermal noise

  • Jannis Lübbe,
  • Matthias Temmen,
  • Philipp Rahe,
  • Angelika Kühnle and
  • Michael Reichling

Beilstein J. Nanotechnol. 2013, 4, 227–233, doi:10.3762/bjnano.4.23

Graphical Abstract
  • demonstrate that the latter method is in particular useful for noncontact atomic force microscopy (NC-AFM) where the required simple instrumentation for spectral analysis is available in most experimental systems. Keywords: AFM; cantilever; noncontact atomic force microscopy (NC-AFM); Q-factor; thermal
  • of the cantilever is small, is given by where kn and Qn are the modal stiffness [4] and Q-factor of the nth cantilever eigenmode [5], respectively. The relation is of relevance for any practical application involving microcantilevers and specifically important for high-resolution noncontact atomic
  • force microscopy (NC-AFM) based on cantilever or tuning fork force sensors. We recently demonstrated how Equation 1 defines the ultimate limit of signal detection for an NC-AFM measurement performed under ultrahigh vacuum (UHV) conditions [6]. Although most NC-AFM systems are operated with cantilevers
PDF
Album
Full Research Paper
Published 28 Mar 2013

Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

  • Jannis Lübbe,
  • Matthias Temmen,
  • Sebastian Rode,
  • Philipp Rahe,
  • Angelika Kühnle and
  • Michael Reichling

Beilstein J. Nanotechnol. 2013, 4, 32–44, doi:10.3762/bjnano.4.4

Graphical Abstract
  • : SmarAct GmbH, Schütte-Lanz-Strasse 9, 26135 Oldenburg, Germany now at: Department of Physics and Astronomy, The University of Utah, 115 South 1400 East, Salt Lake City, UT 84112, USA 10.3762/bjnano.4.4 Abstract The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM
  • microscopy (NC-AFM); noise; Introduction In this contribution, we discuss noise in frequency-modulation noncontact atomic force microscopy (NC-AFM) using cantilevers as force sensors and optical beam deflection (OBD) for signal detection. Figure 1 shows a schematic diagram of an NC-AFM setup based on OBD to
  • system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth. Keywords: Cantilever; feedback loop; filter; noncontact atomic force
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2013

Calculation of the effect of tip geometry on noncontact atomic force microscopy using a qPlus sensor

  • Julian Stirling and
  • Gordon A. Shaw

Beilstein J. Nanotechnol. 2013, 4, 10–19, doi:10.3762/bjnano.4.2

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2013

Characterization of the mechanical properties of qPlus sensors

  • Jan Berger,
  • Martin Švec,
  • Martin Müller,
  • Martin Ledinský,
  • Antonín Fejfar,
  • Pavel Jelínek and
  • Zsolt Majzik

Beilstein J. Nanotechnol. 2013, 4, 1–9, doi:10.3762/bjnano.4.1

Graphical Abstract
  • , including biology, chemistry and physics. In particular, noncontact atomic force microscopy [3] (nc-AFM) has developed into a powerful technique for imaging with true atomic resolution [4][5], chemical sensitivity [6][7][8] or for performing single atom manipulation [9][10][11] on all types of surfaces
PDF
Album
Full Research Paper
Published 02 Jan 2013

Advanced atomic force microscopy techniques

  • Thilo Glatzel,
  • Hendrik Hölscher,
  • Thomas Schimmel,
  • Mehmet Z. Baykara,
  • Udo D. Schwarz and
  • Ricardo Garcia

Beilstein J. Nanotechnol. 2012, 3, 893–894, doi:10.3762/bjnano.3.99

Graphical Abstract
  • fields, and the imaging and discrimination of individual chemical bonds. The development of advanced techniques is the focus of this Thematic Series, following the Thematic Series “Scanning probe microscopy and related techniques” edited by Ernst Meyer and the Thematic Series “Noncontact atomic force
  • microscopy” edited by Udo Schwarz. The articles that are part of the series demonstrate that, despite its 25 years of history, the AFM is still far from reaching its limits, and today’s developments are far-reaching. As the number of research groups utilizing advanced atomic force microscopy techniques
PDF
Editorial
Published 21 Dec 2012

Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

  • Mehmet Z. Baykara,
  • Omur E. Dagdeviren,
  • Todd C. Schwendemann,
  • Harry Mönig,
  • Eric I. Altman and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2012, 3, 637–650, doi:10.3762/bjnano.3.73

Graphical Abstract
  • , Germany Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA 10.3762/bjnano.3.73 Abstract Noncontact atomic force microscopy (NC-AFM) is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a
  • fields, including catalysis, thin-film growth, nanoscale device fabrication, and tribology, among others [1]. Shortly after the first atomic-resolution images of surfaces were obtained by noncontact atomic force microscopy (NC-AFM) [2][3], the method of dynamic force spectroscopy (DFS) was introduced
PDF
Album
Full Research Paper
Published 11 Sep 2012

Nanostructures for sensors, electronics, energy and environment

  • Nunzio Motta

Beilstein J. Nanotechnol. 2012, 3, 351–352, doi:10.3762/bjnano.3.40

Graphical Abstract
  • ” edited by Ernst Meyer [6] and “Noncontact atomic force microscopy” edited by Udo Schwarz [7] to which the interested reader is directed for more information. Science always holds surprises, and I am delighted to present this Thematic Series, giving a quick glance at the science and application of
PDF
Editorial
Published 02 May 2012

Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

  • Miriam Jaafar,
  • David Martínez-Martín,
  • Mariano Cuenca,
  • John Melcher,
  • Arvind Raman and
  • Julio Gómez-Herrero

Beilstein J. Nanotechnol. 2012, 3, 336–344, doi:10.3762/bjnano.3.38

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 18 Apr 2012

Dipole-driven self-organization of zwitterionic molecules on alkali halide surfaces

  • Laurent Nony,
  • Franck Bocquet,
  • Franck Para,
  • Frédéric Chérioux,
  • Eric Duverger,
  • Frank Palmino,
  • Vincent Luzet and
  • Christian Loppacher

Beilstein J. Nanotechnol. 2012, 3, 285–293, doi:10.3762/bjnano.3.32

Graphical Abstract
  • of the substrate to ≈110 °C for 15–30 min. Annealing to lower temperatures only affected the substrate surface a little; choosing higher temperatures resulted in desorption of the molecules. Noncontact atomic force microscopy (NC-AFM) measurements were performed in situ under UHV conditions (<2·10−10
  • -ST, Université de Franche-Comté, CNRS, ENSMM, 32, Avenue de l’Observatoire, F-25044 Besancon Cedex, France 10.3762/bjnano.3.32 Abstract We investigated the adsorption of 4-methoxy-4′-(3-sulfonatopropyl)stilbazolium (MSPS) on different ionic (001) crystal surfaces by means of noncontact atomic force
  • step edges decorated with MSPS molecules that run along the <110> direction. These polar steps most probably minimize the surface energy as they counterbalance the molecular dipole by presenting oppositely charged ions on the rearranged step edge. Keywords: alkali halide surface; noncontact atomic
PDF
Album
Full Research Paper
Published 27 Mar 2012

Modeling noncontact atomic force microscopy resolution on corrugated surfaces

  • Kristen M. Burson,
  • Mahito Yamamoto and
  • William G. Cullen

Beilstein J. Nanotechnol. 2012, 3, 230–237, doi:10.3762/bjnano.3.26

Graphical Abstract
  • specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid). The model results show an attenuation of the topographic
  • contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface. Keywords: graphene; model; noncontact atomic force microscopy; SiO2; van der Waals; Introduction Noncontact atomic force microscopy (NC
PDF
Album
Full Research Paper
Published 13 Mar 2012

A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

  • Manfred Lange,
  • Dennis van Vörden and
  • Rolf Möller

Beilstein J. Nanotechnol. 2012, 3, 207–212, doi:10.3762/bjnano.3.23

Graphical Abstract
  • Manfred Lange Dennis van Vorden Rolf Moller Faculty of Physics, University of Duisburg-Essen, Lotharstr.1-21 47048 Duisburg, Germany 10.3762/bjnano.3.23 Abstract Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force
  • about 0.22 eV/cycle. Keywords: atomic force microscopy; energy dissipation; force spectroscopy; hysteresis loop; PTCDA/Ag/Si(111) √3 × √3; Introduction Noncontact atomic force microscopy (NC-AFM) is a powerful tool for the study of surface properties. The invention of the frequency-modulation mode (FM
PDF
Album
Full Research Paper
Published 08 Mar 2012

Noncontact atomic force microscopy study of the spinel MgAl2O4(111) surface

  • Morten K. Rasmussen,
  • Kristoffer Meinander,
  • Flemming Besenbacher and
  • Jeppe V. Lauritsen

Beilstein J. Nanotechnol. 2012, 3, 192–197, doi:10.3762/bjnano.3.21

Graphical Abstract
  • distinct pattern of line vacancies reflected by the underlying lattice structure. Consequently, by the creation of triangular patches in a 6√3×6√3R30° superstructure, the polar-stabilization requirements are met. Keywords: aluminium oxide; metal oxide surfaces; noncontact atomic force microscopy (NC-AFM
  • Morten K. Rasmussen Kristoffer Meinander Flemming Besenbacher Jeppe V. Lauritsen Interdisciplinary Nanoscience Center and Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark 10.3762/bjnano.3.21 Abstract Based on high-resolution noncontact atomic force
  • microscopy (NC-AFM) experiments we reveal a detailed structural model of the polar (111) surface of the insulating ternary metal oxide, MgAl2O4 (spinel). NC-AFM images reveal a 6√3×6√3R30° superstructure on the surface consisting of patches with the original oxygen-terminated MgAl2O4(111) surface interrupted
PDF
Album
Full Research Paper
Published 06 Mar 2012
Other Beilstein-Institut Open Science Activities